
Hans Admiraal, 2017 1 www.admiraalit.nl

It seems to be a contradiction. ‘Technical design’ is something for the

old-timers in the IT business, those who think in terms of waterfall

methods. ‘Angular’ is the toy of the Web nerds, rapidly building a nice

app. Do you think they will wait for design documentation? This paper

explains that technical design is important for professional web

applications and provides concrete examples of how such a design

could look like in case the Angular framework is used. I will focus on

the form of design rather than design patterns and decisions.

Technical design in UML for

Angular applications
and other web applications

Terminology

To avoid misunderstandings, I will first give a definition. In this paper, a web application is a

client application executed by a web browser. This implies that, almost certainly, the application

is written in HTML, CSS and JavaScript. Such an application is usually only one part of a solution,

the other components running on one or several servers. Using this definition, I deliberately

deviate from definitions like the one given by Wikipedia, which also considers the back end

software to be part of the web application, because I need that for this paper. Besides, with my

definition, the term is better delineated: many web applications use multiple APIs, including third

party APIs (like Google’s) and with the Wikipedia definition, it would be unclear which software

exactly belongs to the web application.

An Angular application is a web application based on the Angular framework, an open source

framework developed by Google. In this paper, we assume version 2 or higher.

UML means Unified Modeling Language, a standard notation for software models, maintained by

the Object Management Group. UML defines all kinds of concepts and their graphical

representations. For example, a class is represented by a rectangle.

To understand this paper, some basic knowledge of Angular and UML is required.

Hans Admiraal, 2017 2 www.admiraalit.nl

Technical design in an agile environment

It should be obvious, but let me put this question anyway: Why would you create functional and

technical models for a web application? Nowadays, most web applications are developed by teams

that have adopted an agile development method, like Scrum or Kanban. These methods do not

prescribe the production of design documentation, which may give people the impression that

such documentation is not needed. Furthermore, the Agile Manifesto says: “We value working

software over comprehensive documentation”. The fact that the same manifesto also states that

documentation is valuable, is sometimes ignored. Good developers can build high-quality

applications without any technical design, but nevertheless, I plead for documenting any

professional application up to a certain level of detail, not sacrificing an iterative process or

prototyping. Why? Because it saves time and money and the users will get a better application!

There is one precondition: the developers must support it. The savings arise from the fact that the

design provides insight into the software structure and thereby reduces the chance of a bad

structure (spaghetti code, inconsistencies, code duplication). Both the insight into the structure of

the software and the high quality of the structure subsequently diminish…

a. the chance of bugs and consequently the time it takes to solve bugs;

b. the time it takes to determine the best way of integrating a particular change or extension;

c. the time it takes to rectify flaws in the structure later on.

Like I said, applications need technical documentation up to a certain level of detail, i.e. not too

detailed. The design should be sufficient to subsequently find more details in the source code. If

the source code has not been written yet, the design should be sufficient for the developer to fill

in the details on his own discretion. By the way, it is not always required to have the design

finished before the coding starts. You may decide to make a prototype first, evaluate it, design the

ultimate situation and then improve the prototype according to the design.

I recommend to let the design and the code be written by different persons, closely working

together and influencing each other. This leads to better quality compared to developers

implementing certain functionality completely on their own. Depending on the individual skills

and affinities, it might be a good option to let the same persons design and implement alternately.

Much more information about designing in an agile environment can be found on Scott Ambler’s

website www.agilemodeling.com.

Hans Admiraal, 2017 3 www.admiraalit.nl

The context of a web application

Usually, creating a web application is not an isolated project, but part of a program, in which a

back end is developed as well and maybe even a complete web site. From this context, all kinds of

input for building the web application is generated (partly during the development), for example:

• Business process models and business object models.

• Functional requirements, in most cases written as user stories or use cases.

• Non-functional requirements, varying from business-level requirements to a reference

architecture (see next section) and coding guidelines.

• User interface design, most often a prototype or a series of images.

• Back end API specifications and eventually the API(s) themselves.

• Documentation of JavaScript libraries that will be used or may be used.

It is not my intention to give a complete action plan to use this input to reach a technical design.

The list of inputs just sketches the context and, at the same time, makes clear that this

information will not be included in the technical design.

Architecture

If Angular applications are built regularly in the organisation, there may be a reference

architecture, which prescribes general rules for the application architecture, for instance about

which types of components are discerned and their mutual relationships. In that case, the

technical design can refer to the reference architecture and you can explain your application

architecture much more concisely.

But anyway, it is essential to describe the architecture for every specific application. Like the rest

of the design, the architecture is a combination of text and diagrams. For making diagrams, I

almost always follow the UML standard, avoiding the need to explain the meaning of the graphical

elements I use. At the top level, an Angular application is divided in modules, so naturally, you

start the design by creating a diagram depicting the modules. You don’t have to design the whole

architecture in one go. As the project progresses, you will add new modules.

The applicable UML symbol for an Angular module is the package. To make its meaning absolutely

clear, you could give the package the stereotype ≪module≫, but if your module names all end

with ‘Module’, then a stereotype is redundant. Figure 1 is an example of a package diagram

showing the Angular modules and their interdependencies.

Hans Admiraal, 2017 4 www.admiraalit.nl

Figure 1. Overview of Angular-modules in a package diagram

The arrows, dependency associations, should match the dependencies as defined, or to be

defined, in the source code:

@NgModule({

 imports: [

 CatalogSearchModule,

 SharedModule]

})

export class CatalogUpdateModule { }

The same is true for nested packages:

@NgModule({

 imports: [

 CatalogSearchModule,

 CatalogUpdateModule,

 LoginModule]
})

export class CatalogModule { }

The nesting should match the folder structure of the development environment:

Figure 2. Folders in the development environment

You could extend the package diagram by displaying the Angular libraries, TypeScript modules

and the back end APIs as packages (using different stereotypes), and then use dependency

associations to indicate which Angular modules make use of which Angular libraries, TypeScript

modules and APIs. If the diagram is getting too complex, you could divide the information over

multiple diagrams, or decide to specify certain information not graphically, but in text only. For

Hans Admiraal, 2017 5 www.admiraalit.nl

example, if ten modules depend on ‘SharedModule’ and the diagram becomes cluttered because of

those ten arrows pointing at ‘SharedModule’, then you could leave out these arrows and explain

the dependencies in the accompanying text.

I always give each Angular module its own colour. In the rest of my technical design, all

components and services get the same colour as the module to which they belong. This makes the

boundaries between the modules visible at the first glance in every diagram.

A picture alone is not sufficient. Every module deserves a short description, which explains the

purpose and the responsibilities of that module. It is useful to include references to user stories or

parts of the user interface design.

The application architecture should also address aspects that pertain to the application as a

whole, like:

• A description of the production environment, including the use of a content delivery

network (CDN), if applicable, and the caching strategy (how do users get the most recent

version, while making optimal use of the browser cache and the CDN cache?).

• A description of the development environment, including unit test provisions.

• A concise overview of the build and deployment process. Which tools (Gulp, Protractor,

Jenkins, …) and which preprocessors are being used (SASS, uglify, …)?

• The input validation and exception handling policies.

• Security. This is a back end issue in the first place, but the impact of security

requirements on the web application should also be well designed.

• The collection of statistics about the usage and the behaviour of the application

(‘analytics’).

• The way the web application is integrated with a content management system, if

applicable.

• Coding guidelines (separately for HTML, CSS, TypeScript and Angular).

All or most of these issues exceed the context of a single application and can better be specified in

a reference architecture, supporting the consistency among the various web applications within

the organisation.

Scenarios

Having visualized the module structure, it is tempting to continue top-down by drawing the

internal structure of every module. More about that in a minute, but first, let’s follow a scenario-

based approach. The sequence of the actions taking place in an Angular application is sometimes

difficult to derive from the source code. This is because it is very event-based and full of

callbacks. To provide insight into these kinds of scenarios, UML offers the so-called sequence

Hans Admiraal, 2017 6 www.admiraalit.nl

diagrams. Figure 3 is an example of this type of diagram. The application elements participating in

the scenario are depicted as coloured rectangles, containing the names of the objects. The object

types are displayed as stereotypes. The colour of the object is equal to the colour of the module to

which it belongs. This gives us insight into the division in modules at the first glance.

The example concerns a small login application. The user must enter his/her name and password,

click the Login button and then, the application opens a particular HTML page showing the

information the user is authorized for. The file name of that HTML page is login<key>.html, where

<key> is a hash number, which is derived from the name and the password. After a successful

login attempt, the application also sends an email to a particular email address, which serves as a

kind of log book, holding a list of everyone who has logged in. The scenario displayed in Figure 3

is a successful login. Models like these provide a good insight into how the application works and

at the same time, they can be related to user stories or use cases easily. This binds functional and

technical design well together.

Lifelines

It is very important to make conscious decisions about what you show in a sequence diagram. If

you include too many details, you are almost programming. This takes a lot of time and it is

unfeasible to keep the diagram up to date. Let’s first determine which lifelines (as the vertical

lanes in the sequence diagram are called officially) we include in the diagram and which not.

Figure 3 shows, from left to right, first the user as a lifeline, then the objects participating in the

 Figure 3. Sequence diagram

Hans Admiraal, 2017 7 www.admiraalit.nl

scenario and the server at the end. What exactly are the application elements I propose to show in

sequence diagrams? As far as Angular is concerned, the elements are the components and the

services. Complex directives or pipes that are significant for the process are to be displayed as

well, but all other TypeScript objects are too unimportant to be shown in the sequence diagram.

For their interactions, one should look at the source code. If the application uses JavaScript

components outside the Angular context, e.g. JQuery or Google Maps JavaScript API, then you

should decide for each such a component whether it will be displayed as a lifeline in the sequence

diagram always or never. In case of JQuery I would choose ‘never’ (too much detail) and in the

case of Google Maps I would choose ‘always’.

HTML files participating in the scenario could also be reflected as lifelines, like index.html in

Figure 3. The HTML templates of the Angular components – in our example that will be

login.component.html – are inherent parts of those components and that’s why I don’t show them.

Figure 3 has one lifeline for the server. If multiple back end APIs participate in the scenario, you

could draw one lifeline per API. The white colour indicates that the server is not part of the

application. However, if the APIs have particular colours in your architecture overview diagram,

then you could use those colours in your sequence diagram as well.

Messages

Great; we know which lifelines to put in the diagram. Now, we have to draw the messages between

the lifelines. My advice is, to show all messages that occur between the lifelines in the scenario at

hand. All participating components and services must be displayed. In other words, if there is a

call from component X to component Y for the current scenario in the source code, but this call is

not mentioned in the sequence diagram, then either the sequence diagram must be extended or

the source code must be adapted. However, the internal flow within a component is not shown. To

know the internal flow, one must look into the source code. These rules make the meaning of the

sequence diagrams transparent for everyone who needs to understand or implement the diagrams.

For the ease of understanding, I describe the scenario in the left margin as well.

What exactly is a message in terms of TypeScript? The most obvious message is a method call.

In Figure 3, method calls are represented by messages with parentheses, for example

checkCredentials(…) and logMessage(…). Parameters, if any, are written between the brackets, but

if that would clutter the diagram, you may indicate that the parameters have been left out using

an ellipsis.

A different kind of message concerns user actions. These are displayed as messages from the user

towards an HTML file or toward the component handling the action. The text at the arrow briefly

describes what the user does, for example “open login page”. Because this activates index.html, I

have drawn an arrow from the user to index.html. This is a complete HTML page, containing

<script> tags for the various JavaScript bundles.

Hans Admiraal, 2017 8 www.admiraalit.nl

Often, one component communicates with the other via Angular, or via another object not

displayed as a lifeline. In such a case, I draw an arrow with a free-format text, indicating what

happens. In Figure 3 for example, I have written the text “<login>” above the second message. The

body of loginPage.html is:

<body> <login> </login> </body>

The LoginComponent has ‘login’ as its selector, so Angular will instantiate this component and

load the contents of the corresponding HTML-template into the web page. This is what the

message labeled “<login>” in the sequence diagram wants to convey.

A closed arrowhead represents a synchronous message in UML. A method call in TypeScript is

always synchronous. An HTTP call is virtually always asynchronous and has an open arrowhead

(Figure 4). A user action is synchronous if the user has to wait for a response by the application –

in our example that is indeed the case – and asynchronous if the user can carry on. For example, if

a background validation takes place when the user leaves an input field and continues to enter

data in the next field, then you would have to draw an arrow with an open arrowhead.

If a method call returns data, you may draw a reply message, as in Figure 5. In this example,

getTargetUrl returns a string. I don’t draw most reply messages in order to keep the diagram

clean, but if data is returned that is crucial in the current scenario, I do draw a reply message.

Figure 4. Asynchronous message

Figure 5. Synchronous message with reply message

Hans Admiraal, 2017 9 www.admiraalit.nl

Failure scenario

And then there is the scenario in which the login attempt fails. We could make a second sequence

diagram for this, like Figure 6, we could combine the two scenarios in one diagram using a

combined fragment (with operator ‘alt’), or we could decide not to model the failure scenario at

all. In this case, I think the failure scenario is too obvious to model in practice. If the failure

scenario would introduce a new interaction between components, then I would model the

scenario. Depending on how much overlap there would be with the basic scenario, I would either

include the failure scenario in the existing diagram, or create a new diagram. In general, I am not

in favour of squeezing multiple scenarios in one diagram using multiple (maybe nested) combined

fragments, because it reduces the readability.

Design per module, per component, per service

Apart from the scenarios, we usually need to do some design work based on top-down

decomposition: a design per module and, included in it, a distinct design for some components

and services as well. For the Angular applications I have worked on, I particularly felt the need to

have:

1. An overview of the structure of complex HTML pages.

2. A design of the generic services.

Figure 7 is an example of the first category mentioned above. It is not a UML diagram, but a

schematic representation of the layout of HTML templates within an HTML page. It is

recommended to make such a picture and to discuss it in the team before the implementation

begins. For someone who needs to make a change in a later phase of the project, the HTML

structure picture gives immediate insight into the structure of the page.

Figure 6. Failure scenario: Wrong user name or wrong password entered

Hans Admiraal, 2017 10 www.admiraalit.nl

The other category is the design of generic services. Although the advantage of sequence diagrams

is, that you can display the message flow through multiple layers of the application, this may also

lead to a lot of duplication. In Figure 3, the logMessage method of the logMessageService is called

once and it sends one HTTP message. Now, imagine that calls to logMessage occur frequently in all

kinds of scenarios, should we display that HTTP message in every sequence diagram? When

something changes in logMessage, we would have to change all these diagrams. Suppose

logMessage does not use only one, but multiple other components, then it becomes clear that

these repetitions are definitely undesirable. It is better to centralize the design of such generic

services, as in Figure 8. Note, that the leftmost lifeline is now an anonymous caller.

Figure 7. HTML structure

Figure 8. Design of a generic function

Hans Admiraal, 2017 11 www.admiraalit.nl

There is often a need to use other forms of design as well. In every project, I usually make some

class diagrams to provide insight into complex data structures and a state machine diagram every

now and then. Do not underestimate the importance of plain text, explaining briefly and clearly

which design decisions have been made.

Tools

So, what would be a good way to store and maintain design documentation mainly based on UML?

There is vast number of options, but let me mention three:

1. A wiki supporting UML.

2. A UML design tool with a document generator.

3. A word processor connected to a UML design tool.

This paper can’t provide a thorough discussion of this subject, but I will give some arguments why

these three options are used in practice.

A wiki supporting UML

An example of this option is Confluence, in combination with the Gliffy plugin. A great advantage

of a wiki is, that it is easy to collaborate with multiple people on a single design. People who do

not write the design, but only read it, can add comments. Changes are immediately visible for

everyone and the history of changes can be monitored. In addition, the hypertext capabilities

allow one to easily navigate through the design and to apply all kinds of cross references between

the various pages of the design. In the case of Confluence, it is well integrated with other Atlassian

tools, like Jira (issue management) and Bitbucket (source code management).

When you start a new project, be aware of the fact that you don’t design only for the developers

who will implement it, but also for the future people who need to know how the delivered

software works. Now, suppose the software has been delivered and the project continues working

on the next version. This means the wiki pages are going to reflect the new version and it will be

difficult to see or specify which versions of the design pages match a particular version of the

application. This is the downside of using a wiki.

A UML design tool with a document generator

An example is Enterprise Architect of SparxSystems. Such a tool provides a good support for UML

design work. Creating and editing diagrams is easy and efficient. All UML elements are separate

entities, which you can reuse in multiple diagrams. Changing the name or another property of

such an element can be done at a central place and these changes automatically become visible in

all diagrams containing that element. Plain text can also be entered in such a tool. Using the

Hans Admiraal, 2017 12 www.admiraalit.nl

document generator, you can generate a Word document, but also an HTML website. The quality of

the generated output is often limited, though.

Every proper UML design tool has some sort of version control, but it is cumbersome to view a

previous version. I always make a complete copy of the design at every delivery moment, in order

to be able to view the design of any version of the application easily afterwards. If continuous

delivery is applied, this is not an option, of course.

A word processor connected to a UML design tool

An example is Microsoft Word in combination with eaDocX and Enterprise Architect. You can use

all features of Word to write texts and you can insert the UML diagrams you have created in

Enterprise Architect at the right spots in the document. The tool eaDocX makes sure, that changes

in Enterprise Architect are also propagated to Word. This combination of tools provides both a

good support for designing in UML and a decent word processor. This enables creating high

quality design documents.

Another advantage is, that you can assign version numbers to documents. If these version

numbers match (or can be mapped to) the version numbers of the software, you know exactly

which version of the design belongs to which version of the software.

A drawback is the fact that changes in the text must be applied in a different tool than changes in

the model.

Epilogue

I hope this paper has provided some guidance to create a technical design for your application. If

you want to view the complete source code of the login application, to compare this with the

sequence diagram in Figure 3, then go to www.admiraalit.nl/admiraal/angular/loginapp.

Good luck!

Hans Admiraal, (freelance IT architect)

hadmiraal outlook.com

www.admiraalit.nl

